No Image

Типы питания микроорганизмов таблица

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

Все физиологические процессы, такие как движение, рост и размножение, образование спор и капсул, выработка токсинов, могут осуществляться только при постоянном притоке энергии.

В процессе питания организм получает вещества, необходимые для синтеза клеточных структур и являющиеся источником энергии для всех процессов жизнедеятельности. Характерными особенностями питания микробов являются поступление питательных веществ внутрь клетки через всю ее поверхность и высокая скорость процесса обмена веществ.

Клеточная стенка и ЦПМ микроорганизмов непроницаемы для многих высокомолекулярных веществ (полисахаридов, липидов, белков и др.), в связи с чем эти вещества вначале расщепляются экзоферментами, выделяемыми клетками во внешнюю среду, на более простые соединения (моно- и дисахариды, аминокислоты, органические кислоты, глицерин и т. д.). Такой процесс, свойственный только микроорганизмам, называется внешним перевариванием.

Питательные среды, на которых культивируют микроорганизмы в лабораторных и производственных условиях, должны отвечать следующим минимальным требованиям:

• в них должны присутствовать все элементы, из которых строится клетка;

• они должны быть в такой форме, в которой микроорганизмы способны их усваивать;

• они должны иметь оптимальное значение pH;

• среды должны быть стерильными.

Питательные среды различаются по консистенции, составу и назначению.

По консистенции различают жидкие, плотные и полужидкие среды. Плотные и полужидкие готовят путем добавления к жидким средам агар-агара или желатина. Для изготовления плотной среды в жидкую вносят обычно 1,5—2,0 % агар-агара, для полужидкой — 0,2—0,5 %.

Состав питательных сред определяется пищевыми потребностями микроорганизмов. В зависимости от состава исходных компонентов различают среды натуральные, синтетические и полусинтетические.

Натуральные среды состоят из естественных субстратов (мяса, молока, овощей и т. д.). К натуральным средам относятся мясопептонный бульон, гидролизованное молоко, пивное сусло, дрожжевой экстракт, настой сена, картофельная среда и др. Расшифровать химический состав таких сред довольно сложно. Молочнокислые бактерии очень требовательны к источникам питания, поэтому их выращивают в молоке, гидролизованном молоке, молочной сыворотке, пивном сусле, специально разработанных средах.

Синтетической называют среду, составленную из известных химических соединений в определенных количествах. Кишечная палочка неприхотлива в отношении питания, поэтому способна расти на синтетической среде достаточно простого состава.

Полусинтетические среды содержат как известные компоненты, так и субстраты неопределенного состава. Например, в синтетическую среду вносят дрожжевой автолизат или мясопептонный бульон.

По назначению различают элективные и дифференциально-диагностические среды.

Элективные среды используют для выделения отдельных групп микроорганизмов из мест их естественного обитания.

Дифференциально-диагностические среды используют для быстрой индикации микроорганизмов на основе их характерных признаков.

Потребности микроорганизмов в питательных веществах. Исходя из химического состава микроорганизмов, для биосинтеза основных макромолекул клетка должна получать вещества, содержащие макроэлементы С, О, Н, N , S , Р, Са, Fe , Mg и микроэлементы М n , Со, Мо, С u , Zn и др. Макроэлементы требуются в сравнительно больших количествах, от 0,2 до 0,5 г/л, тогда как микроэлементы нужны в очень низких концентрациях — от 0,1 до 0,001 мг/л. Минеральные вещества участвуют в регуляции осмотического давления в клетке, pH и Eh среды. Основной функцией микроэлементов является активация различных ферментов.

Среди всех вышеуказанных элементов наибольшее значение в питании микроорганизмов имеет углерод. В зависимости от используемого источника углерода микроорганизмы делятся на: аутотрофы (от греч. autos — сам, t гор he — пища), использующие для конструктивных целей С O 2, и гетеротрофы (от греч. heteros — другой), потребляющие углерод из органических соединений.

Наибольшая степень гетеротрофности присуща микроорганизмам, являющимся облигатными или факультативными паразитами (от греч. parasitos — нахлебник). К факультативным гетеротрофным паразитам относятся патогенные бактерии, вызывающие инфекционные заболевания у человека, животных и растений; к облигатным, способным существовать только внутри клетки хозяина, относятся риккетсии, хламидии, вирусы, некоторые простейшие.

Следующую крупную группу гетеротрофов составляют сапрофиты (от греч. sapros — гнилой, phyton — растение), использующие для своего питания разлагающиеся растительные или животные ткани. К сапрофитам относится большинство бактерий и микромицетов.

Для многих гетеротрофов оптимальным и наиболее доступным органическим источником углерода являются углеводы. Особенно широко они используют моносахариды — гексозы и пентозы. Некоторые группы микроорганизмов способны использовать в качестве источника углерода органические кислоты, первичные спирты, циклические соединения и др.

Азот и сера входят в состав органических соединений клетки в виде аминогрупп и сульфгидрильных групп аминокислот. Некоторые бактерии поглощают эти два элемента в окисленном состоянии — в форме нитратов и сульфатов. Поэтому они сначала восстанавливаются, а затем уже используются в процессах биосинтеза. Большинство бактерий используют азот в восстановленной форме в виде аминокислот, мочевины. Источником серы могут служить сульфиды или серосодержащие аминокислоты (например, цистеин).

Факторы роста — это вещества, которые не синтезируются многими бактериями, но необходимы им для построения органических компонентов клетки. Поэтому они должны присутствовать в питательной среде для выращивания микроорганизмов. К факторам роста относятся:

• аминокислоты, которые нужны для синтеза белков;

• пурины и пиримидины, используемые для синтеза нуклеиновых кислот;

• витамины, являющиеся простетическими группами или активными центрами некоторых ферментов.

Микроорганизмы, нуждающиеся в факторах роста, называют ауксотрофами. Микроорганизмы, которые сами синтезируют необходимые им факторы роста, называют прототрофами.

9.2.1. Типы питания микроорганизмов

Подразделение микроорганизмов на два основных типа — автотрофы и гетеротрофы — оказалось явно недостаточным, чтобы отразить все многообразие пищевых и энергетических потребностей микроорганизмов. Поэтому классификация микроорганизмов по типам питания включает такие основные критерии, как источник углерода, источник энергии и донор электронов. На основе вышеуказанных критериев все микроорганизмы можно разделить на четыре группы (табл. 6).

Таблица 6. Классификация микроорганизмов по типам питания

Типы питания и получения энергии микроорганизмами. Особенности обмена веществ у микробов. Характеристика хемотрофов и фототрофов. Транспорт питательных веществ в микроорганизмах. Зависимость развития бактерий от питания. Питательные потребности микробов.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 29.05.2016
Размер файла 24,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.Типы питания микроорганизмов

4. Транспорт питательных веществ

5. Полная классификация

6. Зависимость развития бактерий от питания

7. Питательные потребности организмов

Список использованных литературы

Актуальность темы данной работы состоит в том, что питание является одним из важнейших факторов поддержании жизнедеятельности микроорганизмов и поэтому значительный интерес представляет изучение типов питания микроорганизмов. Одним из основных показателей типов питания микроорганизмов является в том, что микроорганизмы делятся на две группы: автотрофов и гетеротрофов.

Микроорганизмы, как и все другие живые существа, нуждаются в пище. Пища поступает в их клетки из внешней среды. Пищей обычно называются вещества, которые, попав в живой организм, служат либо источником энергии для процессов жизнедеятельности, либо материалом для построения составных частей клетки.

Питание — это жизненно необходимый процесс для организма. В результате этого процесса микроорганизмы получают энергию, строительный материал для обновления (роста) организма, биологические активные питательные вещества.

Питание позволяет клеточным организмам восполнять запасы энергии и необходимых веществ, которые расходуются в процессе жизнедеятельности. Все типы питания, известные современной науке, присутствуют у микроорганизмов.

Целью данной работы: изучить типы питания и питательных потребностей микроорганизмов.

Исходя из этого, поставлены следующие задачи:

— изучить типов питания микроорганизмов

— изучить транспорт питательных веществ

— изучить питательных потребностей микроорганизмов

Объектом исследования является микробиология.

Предметом исследования является микроорганизмы.

1. Типы питания микроорганизмов

Широкому распространению микроорганизмов способствует разнообразие типов питания. Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы (от греч. Autos — сам, trophe — пища), использующие для построения своих клеток диоксид углерода СО2 и другие неорганические соединения, и гетеротрофы (от греч. Heteros — другой, trophe — пища), питающиеся за счет готовых органических соединений. Аутотрофным бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобактерии, живущие в воде с закисным железом, и др.

Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевание у человека и животных, относят к патогенным и условно-патогенным. Среди патогенных микроорганизмов встречаются облигатные и факультативные паразиты (parasites — нахлебник). Облигатные паразиты способны существовать только внутри клетки, например риккетсии, вирусы и некоторые простейшие.

В зависимости от окисляемого субстрата, называемого донором электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров водорода неорганические соединения, называют литотрофными (от греч. Lithos — камень), а микроорганизмы, использующие в качестве доноров водорода органические соединения, органотрофами.

Учитывая источник энергии, среди бактерий различают фототрофы, т. е. фотосинтезирующие (например, сине-зеленые водоросли, использующие энергию света), и хемотрофы, нуждающиеся в химических источниках энергии.

Читайте также:  Камень в горле

Все многообразие бактерий, существующих сейчас, можно свести к нескольким группам (табл. 1).

Табл. 1. Типы питания и получения энергии микроорганизмами

Прокариоты (водородные, нитрифицирующие и др. бактерии)

Прокариоты (водородные, метановые и др. бактерии)

Прокариоты (метилотрофы, окисляющие формиат)

Животные и многие прокариоты

Растения, цианобактерии, пурпурные и зеленые бактерии

Прокариоты (некоторые цианобактерии, пурпурные и зеленые бактерии)

Прокариоты (некоторые пурпурные бактерии)

Прокариоты (галобактерии, цианобактерии, пурпурные и зеленые бактерии)

Считается, что тип питания не жестко связан с конкретным видом, особенно это относится к фототрофным бактериям, которые днем используют внешний источник энергии — свет, а ночью актуальным становится эндогенные запасные вещества разной природы. Что же касается типов питания, указанных в таблице 1, то фотоавтотрофы (фотолитоавтотрофы) представлены не только большой группой цианобактерий, но и водорослями, зелеными растениями, а также анаэробными пурпурными бактериями. Фотогетеротрофы представлены несерными пурпурными бактериями; хемоорганоавтотрофы используют несовместимую с центральным метаболизмом вещества, для них, как для пропионовокислых бактерий, характерна и гетеротрофная фиксация углекислого газа.

Хемоорганогетеротрофы представлены основной массой микробов-деструкторов (бактерий, грибов) и всеми животными. Хемолитоавтотрофы представлены тионовыми, нитрифицирующими бактериями и рядом других, использующих энергию окисления минеральных соединений для хемосинтеза. хемолитогетеротрофы наряду с хемосинтезом утилизируют ряд простых органических соединений.

Обмен веществ (метаболизм) разных живых организмов имеет сходные механизмы, но у микробов есть ряд особенностей:

1. Благодаря высокой интенсивности метаболизма вес перерабатываемых веществ в 30-40 раз больше веса самого микроорганизма.

2. В питании участвует вся поверхность клетки.

3. Пища перерабатывается выделяемыми ферментами снаружи, а внутрь клетки поступают образовавшиеся после этого более простые соединения.

4. Чрезвычайно высокая адаптация к изменяющиеся среде обитания.

Этот тип микробов использует энергию окислительно-восстановительных реакций. Это наиболее многочисленная группа бактерий, к которой кроме других относится большинство почвенных и болезнетворных микробов.

Суть процесса состоит в поэтапном окислении органических или неорганических веществ, сопровождающемся выделении энергии. Химические реакции могут быть двух видов: аэробными, то есть бескислородными. Процессы первого типа принято называть дыханием, а второго — брожением. Хемотрофы являются единственными живыми организмами Земли, которые не зависят от энергии света Солнца.

К этой группе относятся бактерии, использующие для синтеза органики энергию света, которая преобразуется с помощью фотосинтетических пигментов. Такими пигментами могут быть:

В первом случае фотосинтез происходит с выделением или кислородным фотосинтезом. Он наблюдается у цианобактерий. Во втором случае используется пигмент, относящийся к хлорофиллам, но реагирующий на свет с другой длиной волны, который не могут поглощать ни растения, ни водоросли, ни цианобактерии. При этом выделение кислорода не происходит (аноксигенный или бескислородный фотосинтез). Примером могут служить пурпурные, зеленые и гелиобактерии.

Существует теория, что для фотосинтеза могут быть использованы и другие источники света. Так, обнаруженный в окрестностях подводного термального источника вид GSB1, относящийся к серобактериям, обитает на глубине более 2 км, куда не проникает солнечный свет. Предполагается, что бактериохлорофилл этого вида поглощает длинные световые волны термального источника.

4. Транспорт питательных веществ

Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и др. биополимеры в начале расщепляются экзоферментами до более простых соединений, которые транспортируются внутрь клетки.

Проникновение питательных веществ в клетку происходит с помощью различных механизмов.

1.Пассивная диффузия-вещества поступают в клетку за счет диффузии по градиенту концентрации, т. е. вследствие того, что концентрация вне клетки выше, чем внутри.

2.Облегченная диффузия-также совершается по градиенту концентрации, но с участием ферментов-переносчиков, так называемых пермеаз. Этот фермент присоединяет к себе молекулы вещества на внешней стороне цитоплазматической мембраны и отдает его на внутренний стороне в неизменном виде. Затем свободный переносчик перемещается снова к наружной стороне мембраны, где связывает новые молекулы вещества. При этом каждая пермеаза переносит какое-то определенное вещество.

Эти 2 механизма переноса не требуют энергетически затрат. Активный перенос происходит также с участием пермеаз, причем осуществляется против градиентов концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышающих ее в внешней среде. Такой процесс требует затрат энергии, т.е. расходуется АТФ.

Транслокация радикалов-это четвертый механизм передачи веществ. Это активный перенос химически измененных молекул, с участием пермеаз. Например, такое простое вещество, как глюкоза, переносится в фосфорилированном виде. Выход веществ из бактериальной клетки происходит путем пассивной диффузии или путем облегченной диффузии с участием пермеаз.

5. Полная классификация

Сочетание признаков рассмотренных выше классификаций описывает все возможные типы питания:

1. Хемоорганоавтотрофы. Окисляют трудноусваиваемые вещества. Например, некоторые представители аминобактерий (Aminobacter), метилобактерий (Methylobacterium), флавобактерий (Flavobacterium), псевдомонад (Pseudomonas).

2. Хемоорганогетеротрофы. Большинство видов бактерий.

3. Хемолитоавтотрофы. Водородные, нитрифицирующие, серо-, железобактерии.

4. Хемолитогетеротрофы. Некоторые водородные бактерии.

5. Фотоорганоавтотрофы. Довольно редкий механизм питания, при котором окисляются неусваиваемые вещества. Встречается у некоторых пурпурных бактерий.

6. Фотоорганогетеротрофы. Часть пурпурных и цианобактерий.

7. Фотолитоавтотрофы. Некоторые зеленые, пурпурные и цианобактерии.

8. Фотолитогетеротрофы. Гелиобактерии, часть пурпурных, зеленых и цианобактерий.

Кроме того, часть бактерий относят к миксотрофному типу. Они могут одновременно использовать различные типы питания. Так, представитель родобактерий (Rhodobacteraceae) паракоккпантотропус (Paracoccus pantotrophus) обладает органогетеротрофным и литоавтотрофным типом питания. А цианобактерии не только синтезируют органику фототрофным путем, но и могут потреблять готовые органические вещества, разлагая их до неорганических.

6. Зависимость развития бактерий от питания

Рост и развитие бактерий напрямую зависят не только от внешних условий среды, но во многом и от питания. Обычно это происходит по следующей схеме:

1. При попадании микробов в питательную среду происходит их адаптация к пище и рост клеток. Популяция не увеличивается.

2. Резкий рост численности популяции за счет деления клеток.

3. Баланс между количеством новых и погибших клеток — относительная стабильность популяции.

4. Сокращение численности бактерий по мере обеднения среды и накопления в ней продуктов обмена.

Если на третьей стадии обеспечивать постоянное пополнение питательных веществ и отвод продуктов метаболизма, то получится так называемая непрерывная культура. Ее широко используют в микробиологии.

питание микроорганизм развитие

7. Питательные потребности микроорганизмов

Химический состав клеток микроорганизмов в основном такой же, как у высших растений, животных и человека. Некоторые отличия лишь в составе метаболитов.

Все элементы, входящие в клетки микробов, можно разделить на несколько групп: органогенные — C, O, H, N; макроэлементы — S, P, K, Na, Mg, Cf; микроэлементы — Fe, Co, Mn, Mo, Zn и др. Значение многих элементов в жизни организмов универсально. Из углерода, водорода, кислорода и азота построены основные органические молекулы, сера входит в состав некоторых аминокислот, биотина (витамин Н), фосфор — в состав нуклеиновых кислот, АТФ и т. П., магний — в состав хлорофиллов, железо участвует в процессе дыхания. Однако только у микроорганизмов сера может накапливаться в значительных количествах как запасное вещество клетки (донор электронов серобактерий); медь вместо железа может выполнять роль переносчика электронов на уровне цитохромов у некоторых бактерий, никель в составе уреазы — разрушать мочевину, а мобилен в составе нитрогеназы — фиксировать атмосферный азот.

Перечень уникальности или универсальности отдельных элементов можно продолжить,но это уже сделано в специальных трудах, посвященных физиологии микроорганизмов. Укажем на основные классы органисеких веществ, входящих в клетки микробов: углеводы, спирты, органические кислоты, альдегиды, аминокислоты, белки, нуклеиновые кислоты (ДНК, иРНК, рРНК, тРНК), липиды и ряд других веществ, находящихся в летке в моно-, олиго- или полимерном состояниии выполняющих самые различные функции: структурные, транспортные, каталитические, биосинтетические, энергосберегающие, защитные и т. д.

Микробная клетка не всегда способна синтезировать все необходимые ей молекулы, поэтому нуждается в так называемых факторах роста (витамины, азотистые основания, аминокислоты, углеводы и др.), которые должны присутствовать в окружающей среде. Такие организмы называются ауксотрофами, в отличие от прототрофов, не нуждающихся в факторах роста. Роль воды в микробных клетках сводится к растворению многих минеральных и органических соединений, гидролизу полимерных субстратов (крахмала, клетчатки, белков и др.), формированию коллоидных структур, участию в процессе бактериального фотосинтеза, поддержанию осмотического давления. Содержание воды в вегетативных клетках колеблется в пределах 75-95% и резко снижается в составе спор, грибных склероциев, при переходе организмов в анабиоз.

Только два типа питания и получения энергии из указанных выше получили прогрессивное развитие: представители царства Planta (растения) относятся к фотоавтотрофам, царства Mycota (грибы) и Animalia (животные) — к хемоорганогетеротрофам. Источники энергии и углерода в процессе эволюции существенно повлияли на строение и образ жизни организмов с разным типом питания, например растения и животные. Обширная крона растений приспособлена для фиксации углекислого газа атмосферы и поглощения солнечной радиации, а необходимость использования органических веществ от простых, легкорастворимых до сложных полимерных субстратов отражена в механизмах диффузии или активного транспорта их через оболочки клетки у грибов и в развитии сложной пищеварительной системы у животных.

Читайте также:  Абсцесс щечной области мкб 10

Большинство известных бактерий относится к гетеротрофам, среди них есть аэробные и анаэробные формы. Интересен вопрос, насколько эффективно органическое вещество используются этими организмами с точки зрения получения энергии при его окислении и в каком направлении шла эволюция биоэнергетических процессов? Ответ на этот вопрос можно найти только в мире микроорганизмов, точнее бактерий, поскольку это самые древние клеточные организмы нашей планеты. Среди бактерий встречаются самые разнообразные типы питания и получения энергии. Варьируя условия культивирования прокариот, ученые доказали возможность существования бактерий в разнообразных экологических нишах, которые никогда не будут заняты другими формами жизни. Именно поэтому для выяснения своеобразия этих экониш сначала необходимо понять механизмы биологического окисления.

Список использованной литературы

1. К. Френкель/ «Основы учения о бактериях» — М.: «Колос», 2000.- 335с.

2. Н.А. Белясова/ Микробиология: учебник: -М.: Высшая шк., 2012.- 443с.

3. А.Л. Брюханов, К. В. Рыбак/ Молекулярная микробиология: Учебник для вузов: -М.: МГУ, 2012 -480с.

4. Р.Г. Госманов/ Микробиология: Учебное пособие: -СПб.: Лань, 2011. — 496с.

5. Д.М. Джей/ Современная пищевая микробиология -М.: БИНОМ. ЛЗ, 2012. — 886с.

1. Физиологический период развития микробиологии. Открытия Л. Пастера

Микробиология (от греч. micros – малый, bios – жизнь, logos – наука) – наука о микроскопически малых существах, называемых микроорганизмами. Микробиология изучает морфологию, физиологию, биохимию, систематику, генетику и экологию микроорганизмов, их роль и значение в круговороте веществ, патологии человека, животных и растений, в экономике.

К микроорганизмам относятся преимущественно одноклеточные организмы – бактерии, микроскопические грибы и водоросли, простейшие, а также организмы с неклеточной организацией – вирусы. Предметом изучения микробиологии традиционно служат в основном бактерии, а также в общем плане организации рассматриваются вирусы.

Микробиология прошла длительный путь развития, исчисляющийся многими тысячелетиями. Уже в V.VI тысячелетии до н.э. человек пользовался плодами деятельности микроорганизмов, не зная об их существовании. Виноделие, хлебопечение, сыроделие, выделка кож . не что иное, как процессы, проходящие с участием микроорганизмов. Тогда же, в древности, ученые и мыслители предполагали, что многие болезни вызываются какими-то посторонними невидимыми причинами, имеющими живую природу.

Следовательно, микробиология зародилась задолго до нашей эры. В своем развитии она прошла несколько этапов, не столько связанных хронологически, сколько обусловленных основными достижениями и открытиями.

Историю развития микробиологии можно ‘разделить на пять этапов: эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический.

Открытие новых микроорганизмов сопровождалось изучением не только их строения, но и жизнедеятельности. Поэтому XIX в., особенно его вторую половину, принято называть физиологическим периодом в развитии микробиологии. Этот этап связан с именем Л. Пастера, который стал основоположником медицинской микробиологии, а также иммунологии и биотехнологии.

Начало изучению физиологии и биохимии микроорганизмов, выяснению их роли в природе и жизни человека положил французский ученый Луи Пастер (1822– 1895). С его работ начался физиологический период микробиологии. Л.

Пастер впервые в противоположность мнению химиков показал, что процессы брожения и гниения обусловливаются жизнедеятельностью ми-кроорганизмов, специфических для каждого вида брожения. Он установил, что эти процессы могут осуществляться без доступа молекулярного кислорода в анаэробных условиях. Таким образом, Пастер открыл принципиально новое биологическое явление – анаэробиоз. Благодаря своим исследованиям Пастер смог установить природу «болезней» вина и пива, показав, что их скисание и прогоркание также являются результатом жизнедеятельности микроорганизмов. Он предложил способ предохранения вина и пива от скисания и прогоркания (способ борьбы с контаминацией пищевых продуктов): их кратковременный прогрев до температуры 70–80 °С, названный впоследствии пастеризацией.

К области теоретических открытий Пастера относятся его работы о невозможности самозарождения жизни. Оппоненты Пастера утверждали, что в субстратах, подвергающихся брожению или гниению, их возбудители самозарождаются. Безупречными экспериментами Пастер показал, что в сосудах со стерильным бульоном, закрытых ватными пробками во избежание контакта с воздухом, самозарождение микроорганизмов невозможно. Рост микроорганизмов наблюдается тогда, когда в сосуд с питательной средой попадает воздух, содержащий микроорганизмы, или питательная среда подвергается недостаточной термической обработке, при которой устойчивые к температуре споры бактерий не погибают.

Неоценимый вклад внес Пастер в медицинскую микробиологию. В процессе исследований он установил, что не только брожение, болезни пива и вина, шелковичных червей обусловлены жизнедеятельностью микроорганизмов, но и многие болезни человека и животных также вызываются микроорганизмами. Они, подобно возбудителям брожения, очень специфичны: каждый вид патогенных микроорганизмов вызвает строго определенное заболевание. Пастер доказал микробную природу таких заболеваний человека и животных, как сибирская язва, куриная холера, бешенство. Кроме того, он разработал способ борьбы с возбудителями этих заболеваний с помощью вакцин – культур патогенных микроорганизмов с ослабленными вирулентными свойствами.

Л. Пастер с полным основанием может считаться основоположником общей, промышленной, медицинской и ветеринарной микробиологии.

2. Процесс денитрификации. Химизм. Возбудители. Особенности энергетического обмена у них. Значение этого процесса в объединении почвы азотом, методы регулирования агротехническими приемами.

Денитрификация [от лат. de — приставка, означающая здесь завершение действия, nitr(ogenium) — азот и facio — делаю], широко распространённый в природе процесс восстановления нитратов до молекулярного азота, вызываемый бактериями. Денитрификация протекает с образованием нитритов и закиси азота по схеме:
2HNO3 →2HNO2 →N2 O→N2 .

Энергию, необходимую для восстановления нитратов, бактерии получают в результате окисления органических веществ (углеводы, спирты, органические кислоты), а кислород нитратов является акцептором электрона и водорода. Денитрификация, происходящая при окислении глюкозы, может быть выражена уравнением:
5C6 H12 O6 +24KNO3 →24КНСО3 +6CO2 +12N2 +18H2 O.

Существуют также особые виды денитрифицирующих бактерий, восстанавливающие нитраты при окислении серы или молекулярного водорода. Денитрификация сильно угнетается и прекращается полностью в присутствии молекулярного кислорода. С денитрификацией не следует смешивать восстановление нитратов до аммиака, связанное с ассимиляцией микроорганизмами нитратов как источника азота. Такой способностью обладают многие бактерии, а также актиномицеты и грибы, которые вообще не способны вызывать денитрификацию. От денитрификации следует отличать ложную денитрификацию, при которой в культуре бактерий или в природе происходит чисто химическое взаимодействие нитритов с аммонийными солями, аминами или амидами, сопровождаемое выделением молекулярного азота. Например, NH4 CI + HNO2 →N2 + HCl + 2H2 O. В 1 г почвы содержатся десятки и сотни тысяч денитрифицирующих бактерий. Однако денитрификация в почве может протекать энергично только при определённых условиях: достаточном количестве нитратов и легко разлагаемого микроорганизмами безазотистого органического вещества, оптимальной реакции (pH 7,0-8,2) и температуре (25-30°С), а главное при анаэробных условиях. Именно поэтому денитрификация протекает весьма интенсивно во влажных, плохо аэрируемых почвах. При денитрификация содержание азота в почве падает в результате выделения молекулярного азота и следов закиси азота, что влечёт за собой снижение урожайности почвы. После внесения в глинистую почву нитратов и растительных остатков за 10 дней 75% азота нитратов улетучивается из почвы в виде молекулярного азота. Хорошая аэрация почвы (обработка), уменьшение влажности почвы в определённые периоды (дренаж), создание условий для лучшего потребления нитратов почвы культурными растениями — всё это может понизить денитрификацию в почве.

Процесс денитрификации в почвах.

Процессы денитрификации в почве нежелательны, так как они приводят к обеднению почвы азотом. Плохая аэрация, высокая влажность и щелочная реакция почвы (рН 7,0— 8,2) способствуют развитию денитрифицирующих бактерий, а рыхление почвы угнетает их. В окультуренных почвах Д. не приносит большого ущерба, так как в них обеспечена аэрация, а растворимых органических веществ содержится немного. Поэтому повышение окуль-туренности почвы — лучший метод борьбы с Д. В связи с этим для сохранения большего количества азота в почве прудов необходимо ее ежегодно во время осушения прудов рыхлить (верхний слой толщиной 20— 30 см разрыхляют, но не перевертывают, как при вспашке почвы).

В земной коре общие запасы азота составляют десятки миллиардов тонн. В основном он присутствует в виде органических соединений. В почвах Нечерноземной зоны в среднем содержится общего азота: в супесчаной — 0,05-0,07%, в суглинистой — 0,1- 0,2%, в глинистой — 0,1-0,23%, в торфянистой — 0,6-1%. Общий запас азота в супесчаной дерново-подзолистой почве — 1,5 т/га, а в черноземной-15 т/га. Это валовое содержание азота, а в минеральных соединениях его около 1% от общего. Скорость минерализации азота имеет важное значение.

Разложение органических азотистых веществ в почве происходит следующим путем: белки, гуминовые вещества — аминокислоты, амиды — аммиак — нитриты — нитраты. В результате процесса аммонификации образуются органические кислоты, спирты, углекислота и аммиак. Органические кислоты и спирты разлагаются до углекислого газа, водорода, воды, метана. Аммиак с кислотами образует соли, аммоний поглощается почвенными коллоидами и глинистыми минералами. Процесс аммонификации идет в аэробных и анаэробных условиях, но в анаэробных условиях при сильнокислой и щелочной реакциях замедляется. В аэробных условиях соли аммония окисляются до нитратов, образуется азотная кислота, которая нейтрализуется бикарбонатом кальция и поглощенными основаниями почвы. При влажности почвы 60-70%, 25-32 °С и рН 6,2-8,2 нитрификация идет интенсивно. Содержание нитратов (обычно 2-20 мг/кг почвы) зависит от состояния почвы. Например, под паром или под какой-либо культурой содержание нитратов может различаться в десятки раз.

В дерново-подзолистой почве при кислой реакции, избыточной влажности, плохой аэрации и низкой температуре процесс минерализации останавливается на стадии образования аммиака. Нитрификация подавляется осенью и ранней весной, летом этот процесс протекает интенсивно. Улучшение аэрации в результате обработки почвы усиливает нитрификацию; известкование также улучшает протекание данного процесса. Внесение органических и минеральных удобрений обогащает почву элементами питания, усиливая минерализацию.

В паровых полях происходит не только обогащение почвы нитратами; велики также потери. Чтобы избежать больших потерь азота при поливах, необходимо рассчитать количество поливной воды таким образом, чтобы почвенные воды не смыкались с грунтовыми. Большие потери азота происходят в результате процесса денитрификации — восстановления нитратов до газообразного азота. Особенно интенсивна денитрификация при анаэробных условиях, в щелочной среде и большом количестве органического вещества. Бактерии-денитрификаторы наиболее интенсивно окисляют органическое вещество, используя кислород нитратов, при температуре 28-30 °С и рН 7,0-7,5. Процесс денитрификации идет и в обычных условиях, поскольку всегда внутри агрегатов почвы могут создаваться анаэробные условия. Часть азота почвы и внесенных удобрений теряется в виде аммиака, например, при внесении аммонийных солей в карбонатные почвы или мочевины поверхностно. При внесении аммиака нужна глубокая заделка удобрений. Известкование усиливает потери аммиачного азота из мочевины и солей аммония. Солома или соломистый навоз закрепляют азот (иммобилизация) в телах микроорганизмов. Отношение азота к углероду в телах микроорганизмов 1:5-1:7, а в органических остатках (солома бобовых) 1:20-1:25, (солома злаковых) 1:80-1:100. Микроорганизмы дополнительно используют минеральный азот, содержащийся в почве. После отмирания микроорганизмов азот, закрепленный в их телах, минерализуется и может быть использован растениями.

Д. Н. Прянишников считал, что «. главным условием, определяющим среднюю высоту урожая в разные эпохи, была степень обеспеченности сельскохозяйственных растений азотом». Без применения удобрений за 30-50 лет запасы гумуса и азота, например, в дерново-подзолистой почве снижаются на 25-50%.

3. Практическое использование характера взаимоотношений между микроорганизмами для регулирования их жизнедеятельности при производстве и хранении пищевых продуктов.

Хранение пищевых продуктов.

Микробиологические процессы снижают пищевую ценность, делают продукты непригодными к употреблению. К этим процессам относят брожение, гниение и плесневение.

Брожение — это расщепление безазотистых органических веществ (углеводов, этилового спирта, молочной кислоты) под действием ферментов, выделяемых микроорганизмами. В процессе хранения пищевых продуктов могут возникать спиртовое, молочно-кислое, уксусно-кислое, масляно-кислое брожение и др.

Спиртовое брожение лежит в основе виноделия, пивоварения, получения спирта. Однако этот вид брожения часто является причиной’ порчи многих пищевых продуктов — варенья, джемов, компотов, соков.

При молочно-кислом брожении под действием молочно-кислых бактерий происходит разложение cахаров с образованием молочной кислоты. Этот процесс используют при производстве кисло-молочных продуктов, сыра, ржаного хлеба, квашеных овощей. Вместе с тем молочно-кислое брожение вызывает прокисание пива, вина, молока.

Уксусно-кислое брожение вызывается уксусно-кислыми бактериями, которые превращают спирт в уксусную кислоту. Это брожение является причиной порчи вин, пива, кваса.

Масляно-кислое брожение возникает при участии мас-ляно-кислых бактерий. Образующаяся при этом масляная кислота придает горечь и неприятный запах квашеной капусте, молочным продуктам, тесту. Выделяющиеся при этом газы обусловливают бомбаж консервов.

Гниение — глубокий процесс распада белков под влиянием протеолитических ферментов, выделяемых гнилостными микроорганизмами. Конечными продуктами распада являются сероводород, углекислый газ, аммиак, метан, индол, меркаптаны и другие вещества, которые придают продуктам крайне неприятный запах и могут стать причиной отравления. Чаще всего загнивают продукты, богатые белком, — мясо, рыба, яйца и др.

Плесневение вызывают плесневые грибы, выделяющие различные ферменты, расщепляющие углеводы, белки и жиры. При плесневении продукты покрываются налетами различного цвета, приобретают неприятные вкус и запах. Плесень вызывает порчу плодов, овощей, хлеба, мяса, масла, яиц.

Консервирование пищевых продуктов

Квашение и мочение как методы консервирования основаны на образовании молочной кислоты в результате сбраживания имеющегося в продуктах сахара под влиянием молочнокислых бактерий. Консервирующим действием обладает также поваренная соль, добавляемая при этих видах переработки. Квашение и мочение являются широко распространёнными в домашних условиях методами консервирования продуктов (мочение яблок, квашение капусты).

Соление основано на обезвоживании продукта и микробов под действием гипертонических 15—20-процентных растворов поваренной соли.

Для повышения осмотического давления с целью консервирования пищевых продуктов применяют сахар или поваренную соль. Сахар или сахарный сироп используют для выработки из плодов и ягод варенья, джема, повидла, желе, цукатов и других изделий. Концентрация сахара доводится до 65 %

Поваренную соль широко применяют для консервирования рыбы, мяса, грибов. Развитие гнилостных бактерий прекращается при концентрации соли 10 %, а при 20-25 % задерживается рост всех микробов. Сильносоленые продукты имеют низкие вкусовые качества. При солении овощей, грибов, рыбы потери растворимых веществ достигают 20-50 %. Различают сухой, мокрый и смешанный способы посола.

К биохимическим методам консервирования относят ‘консервирование пищевых продуктов молочной кислотой (квашение, соление, мочение) и этиловым спиртом. Эти вещества, образующиеся в продуктах в результате биохимических процессов, подавляют деятельность гнилостных микроорганизмов, вызывающих порчу продуктов.

При квашении овощей и плодов содержащиеся в них сахара сбраживаются молочно-кислыми бактериями в молочную кислоту. Молочная кислота в количестве 0,6-1,4 %, придает продукту специфические приятные вкус и аромат. В квашении плодов и овощей помимо молочно-кислых бактерий участвуют дрожжи, сбраживающие сахара в спирт и углекислый газ. Содержание этилового спирта в квашеных продуктах не должно превышать 0,5-0,7%, в моченых яблоках — 0,8-1,8%,.

Качество квашеных продуктов зависит от содержания сахара, количества добавленной соли, условий хранения и других факторов.

Химические методы консервирования основаны на добавлении к пищевым продуктам небольшого количества химических веществ — консервантов, которые обладают бактерицидным или антисептическим действием и должны быть безвредными, не изменять вкус, запах и цвет продукта. К таким веществам относят уксусную, бензойную, сорбиновую, борную, пропионовую кислоты, сернистый ангидрид, метабисульфит калия, уротропин, некоторые антибиотики.

Маринованные продукты содержат уксусную кислоту в количестве 0,6-1,2 %. При такой концентрации задерживается развитие микроорганизмов в продуктах, и они приобретают специфический вкус. Маринуют овощи, плоды, грибы, сельдь и др.

Копчение относится к комбинированному методу консервирования. Суть его в том, что продукт после соления обрабатывают дымом или коптильной жидкостью. В их составе содержатся антисептические вещества — фенол, фурфурол, альдегиды, смолы и другие, которые предохраняют продукты от развития в них микроорганизмов. При копчении продукты приобретают особые вкус и аромат, поверхность их окрашивается в коричнево-золотистые тона. Этому процессу подвергают мясные и рыбные продукты.

4. Заполнить таблицу 2, по использованию в пищевой промышленности биологических препаратов.

Таблица 2 — Биологические препараты, используемые в пищевой промышленности

Закваска, кефирный грибок

22 вида микроорганизмов:vмолочнокислые стрептококки, молочнокислые палочки, уксуснокилые бактерии, дрожжи и др.

Закваска способствует молочнокислому брожению в молоке и частично спиртовому. Сочетание молочной кислоты, углекислоты и спирта обуславдивают специфический вкус кефира

Приготовление кефира из молока

Сахаромицеты – одноклеточные грибы класса сумчатых грибов (S.Serevisiae)

Сахаромицеты преобразуют сахара, содержащиеся в муке в углекислый газ, который позволяет поднятся тесту

Приготовление хлебобулочных изделий и кондитерской промышленности

Ферменты продуцируют грибы. Неочищенные ферментные препараты получают высушиванием мицелия вместе с субстратом с дальнейшим изменением. Далее при необходимости проводят чистку препарата

Получение ферментов α-амилазы и липазы для гидролиза углеводов и жиров

Закваска для йогурта

Болгарская палочка, термофильный стрептококк

При внесении этих культур в пастеризованное молоко сложные вещества распадаются на более простые, образуется молочная кислота при расщеплении молочного сахара

Приготовление йогурта из молока

Виды: B.Bifidum, B.longum, B.brive, B.infantis

Бактерии вводят в молоко с молочнокислыми культурами

Приготовление Бифилайфа, повышающего иммунитет, нормализующего работу кишечника, улучшающего обмен веществ

5. Заполнить таблицы 3, 4 и представить рисунки 1,2:

Таблица 3 — Типы питания микроорганизмов

Название: Физиологический период развития микробиологии
Раздел: Рефераты по биологии
Тип: реферат Добавлен 03:28:50 06 июля 2011 Похожие работы
Просмотров: 2822 Комментариев: 14 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно Скачать
Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Медицина
0 комментариев
No Image Медицина
0 комментариев
No Image Медицина
0 комментариев
No Image Медицина
0 комментариев
Adblock detector