No Image

Температура кипения синильной кислоты

СОДЕРЖАНИЕ
1 просмотров
10 марта 2020

Свойства синильной кислоты

Синильная кислота и ее соединения

Синильная кислота (цианистоводородная кислота) впервые синтезирована шведским ученым Карлом Шееле в 1782 г. В качестве отравляющего вещества синильная кислота впервые применена 1 июля 1916 г на реке. Сомме французскими войсками против немецких войск. Выраженный боевой эффект получить не удалось, так как относительная плотность паров HCN по воздуху меньше 1. Попытки утяжелить пары синильной кислоты путем добавления треххлористого мышьяка, хлорного олова и хлороформа также не привели к созданию боевых концентраций ядовитых паров в атмосфере.

Сама кислота и ее соли получили широкое применение в сельском хозяйстве (в качестве средств борьбы с вредителями плодовых деревьев), в промышленности (для извлечения золота и серебра из руд), в химическом синтезе нитрильного каучука, синтетических волокон, пластмасс и т. д.

В качестве ОВ применение маловероятно. Возможно использование производных синильной кислоты в качестве диверсионных агентов.

В настоящее время известны различные группы химических соединений, содержащих группу CN в молекуле.

250.Температура кипения синильной кислоты

Среди них: нитрилы — синильная кислота, дициан, цианистый калий, хлорциан — CI-CN, пропионитрил — C3H7-CN и т. д.); изонитрилы — фенилизонитрилхлорид; цианаты — фенилцианат; изоцианаты — метилизоцианат, фенилизоцианат; тиопианаты — роданистый калий; изотиоцианаты — метилизотиоцианат. Наименее токсичными (LD50 более 500 мг/кг) являются представители цианатов и тиоцианатов. Изоцианаты и изотиоцианаты обладают раздражающим и удушающим действием. Обшеядовитое действие (за счет отщепления в организме от исходного вещества иона CN-) проявляют нитрилы и в меньшей степени изонитрилы. Высокой токсичностью отличается, помимо самой синильной кислоты и ее солей, хлорциан, бромциан, а также пропионитрил, лишь в 3-4 раза уступающий по токсичности цианистому калию.

Синильная кислота встречается в растениях в форме гетерогликозидов. Около 2000 видов растений содержат CN-содержащие гликозиды. Например, в виде амигдалина HCN содержится в семенах горького миндаля, в косточках персиков, абрикосов, слив, вишни и др.

Физико-химические и токсические свойства

Синильная кислота — бесцветная прозрачная жидкость с запахом горького миндаля. температура кипения +25,7°С, замерзания 13,4° С. Относительная плотность ее паров по воздуху равна 0,93. Пары синильной кислоты плохо поглощаются активированным углем, но хорошо сорбируются другими пористыми материалами.

При взаимодействии со щелочами HCN образует соли (цианистый калий, цианистый натрий и т. д.), которые по токсичности мало уступают самой синильной кислоте. При замещение атома водорода галогенами образуются галандционы (хлорциан, бромциан, йодциан). Синильная кислота и циамиды вступают взаимодействие с серой (образуются нетоксичные родомиды), а также с альдегидами и нетонами (образуются малотоксичные циангидриды). Эти реакции лежат в основе детоксикации яда. В водных растворах кислота и ее соли диссоциируют с образованием иона CN-. Синильная кислота является слабой кислотой и может быть вытеснена из своих солей другими, даже самыми слабыми, кислотами (например, угольной).

Основным путем проникновения паров синильной кислоты в организм является ингаляционный. Среднесмертельная концентрация составляет 2 мг×мин/л, смертельное отравление солями синильной кислоты возможно при проникновении их в организм с зараженной водой или пищей. При отравлении через рот смертельными дозами для человека являются: HCN — 1 мг/кг; KCN — 2,5 мг/кг; NaCN — 1,8 мг/кг.

Механизм токсического действия и патогенез интоксикации

Цианиды угнетают окислительно-восстановительные процессы в тканях, нарушая последний этап передачи протонов и электронов цепью дыхательных ферментов от окисляемых субстратов на кислород.

Как известно, на этом этапе переносчиками протонов и электронов является цепь цитохромов (цитохромы В, C1, С, А и А3). Последовательная передача электронов от одного цитохрома к другому приводит к окислению и восстановлению находящегося в них железа (Fe3+«Fe2+). Конечным звеном цепи цитохромов является цитохромоксидаза. Установлено, что энзим включает 4 единицы гема «А» и 2 единицы — «А3». Именно с цитохромоксидазы электроны передаются кислороду, доставляемому к тканям кровью. Установлено, что циан-ионы (CN-), растворенные в крови, достигают тканей, где вступают во взаимодействие с трехвалентной формой железа цитохрома А3 цитохромоксидазы (с Fe2+ цианиды не взаимодействуют). Соединившись с цианидом, цитохромоксидаза утрачивает способность переносить электроны на молекулярный кислород.

Вследствие выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. Кислород с артериальной кровью доставляется к тканям в достаточном количестве, но ими не усваивается и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов (АТФ и др.). Активируется гликолиз, т. е. обмен с аэробного перестраивается на анаэробный.

В результате тканевой гипоксии, развивающейся поя влиянием синильной кислоты, в первую очередь нарушаются функции центральной нервной системы. Действуя в больших дозах, вещества вызывают вначале возбуждение центральной нервной системы, а затем ее угнетение.

При действии сверхвысоких доз токсиканта развивается молниеносная форма отравления. Пострадавший через несколько секунд после воздействия теряет сознание. Развиваются судороги. Артериальное давление после кратковременного подъема падает. Через несколько минут останавливаются дыхание и сердечная деятельность.

При замедленном течении в развитии интоксикации можно выделить несколько периодов.

Период начальных явлений характеризуется легким раздражением слизистых оболочек верхних дыхательных путей и конъюнктивы глаз, неприятным горьким вкусом и жжением во рту. Ощущается запах горького миндаля. Наблюдаются слюнотечение, тошнота, иногда рвота, головокружение, головная боль, боль в области сердца, тахикардия (иногда брадикардия), учащение дыхания. Нарушается координация движений, ощущается слабость, возникает чувство страха. Перечисленные признаки появляются почти сразу после воздействия яда. Скрытого периода практически нет.

Диспноэтический период характеризуется развитием мучительной одышки. Наблюдается резко выраженное увеличение частоты и глубины дыхания. Первоначальное возбуждение дыхания по мере развития интоксикации сменяется его угнетением. Дыхание становится неправильным — с коротким вдохом и длительным выдохом. Нарастают боль и чувство стеснения в груди. Сознание угнетено. Наблюдаются выраженная брадикардия, расширение зрачков, экзофтальм, рвота. Кожные покровы и слизистые оболочки приобретают розовую окраску. В легких случаях отравление синильной кислотой этими симптомами и ограничивается. Через несколько часов все проявления интоксикации исчезают.

Диспноэтический период сменяется периодом развития судорог. Судороги носят клонико-тонический характер с преобладанием тонического компонента. Сознание утрачивается. Дыхание редкое, но признаков цианоза нет. Кожные покровы и слизистые оболочки розовые. Первоначально наблюдавшиеся замедление сердечного ритма, повышение артериального давления и увеличение минутного объема сердца сменяются падением артериального давления, учащением пульса, его аритмичностью. Развивается острая сердечно-сосудистая недостаточность. Возможна остановка сердца. Корнеальный, зрачковый и другие рефлексы снижены. Тонус мышц значительно повышен.

Вслед за коротким судорожным периодом, если не наступает смерть, развивается паралитический период. Он характеризуется полной потерей чувствительности, исчезновением рефлексов, расслаблением мышц, непроизвольной дефекацией и мочеиспусканием. Дыхание становится редким, поверхностным. Артериальное давление падает. Пульс частый, слабого наполнения, аритмичный. Развивается кома, в которой пострадавший, если не наступает смерть от остановки дыхания и сердечной деятельности, может находиться несколько часов, а иногда и суток. Температура тела у пораженных в паралитическом периоде понижена.

Угнетение тканевого дыхания приводит к изменению клеточного, газового и биохимического составов крови. Содержание в крови эритроцитов увеличивается вследствие рефлекторного сокращения селезенки и выхода клеток из депо. Цвет венозной крови становится ярко-алым за счет избыточного содержания оксигемоглобина (НbО). Артерио-венозная разница по кислороду резко уменьшается. Содержание СО2 в крови снижается вследствие меньшего образования и усиленного выделения при гипервентиляции легких. Такая динамика газового состава первоначально приводит к газовому алкалозу, который затем сменяется метаболическим ацидозом. В крови накапливаются недоокисленные продукты обмена: увеличивается содержание молочной кислоты, нарастает содержание кетоновых тел (ацетон, ацетоуксусная и b-окcимасляная кислоты), повышается содержание сахара (гипергликемия).

Продолжительность течения всего отравления, как и отдельных периодов интоксикации, колеблется в значительных пределах (от нескольких минут до многих часов). Это зависит от количества яда, попавшего в организм, предшествующего состояния организма и других причин.

Выраженность, характер осложнений и последствий отравления во многом зависят от продолжительности гипоксического состояния, в котором пребывает отравленный. Особенно частыми являются нарушения функций нервной системы. После перенесения острого отравления в течение нескольких недель наблюдаются головные боли, повышенная утомляемость, нарушение координации движений. Речь затруднена. Иногда развиваются параличи и парезы отдельных групп мышц. Возможны нарушения психики.

Наблюдаются стойкие изменения функций сердечно-сосудистой системы вследствие ишемии миокарда. Нарушения дыхательной системы проявляются функциональной лабильностью дыхательного центра и быстрой его истощаемостью при повышенных нагрузках.

Особенности действия галогенпроизводных синильной кислоты

Хлорциан (CICN) как отравляющее вещество впервые был применен в период Первой мировой войны в октябре 1916 г. французскими войсками. Хлорциан — бесцветная прозрачная жидкость, кипит при 12,6ºС и замерзает при -6,5°С. Обладает раздражающим запахом (запах хлора). Плотность пара по воздуху 2,1.

Бромциан (BrCN) впервые применен в годы Первой мировой войны (1916) австро-венгерскими войсками в виде смеси: 25% бромциана, 25% бромацетона и 50% бензола. Бромциан — бесцветное или желтое кристаллическое вещество, очень летучее, с резким запахом. Температура кипения 61,3ºС, плавления 52°С. Плотность паров по воздуху — 7.

Оба соединения (особенно C1CN) по токсичности близки к синильной кислоте.

Хлорциан и бромциан, действуя подобно HCN, обладают и раздражающим действием. Они вызывают слезотечение, раздражение слизистых оболочек носа, носоглотки, гортани и трахеи. В больших концентрациях могут вызывать токсический отек легких.

Мероприятия медицинской защиты:

Специальные санитарно-гигиенические мероприятия:

  • использование средств защиты органов дыхания в очаге химического заражения;
  • участие медицинской службы в проведении химической разведки, проведение экспертизы воды и продовольствия на зараженность ТХВ;
  • запрет на использование воды и продовольствия из непроверенных источников.

Специальные лечебные мероприятия:

  • применение антидотов и средств патогенетической и симптоматической терапии;
  • подготовка и проведение эвакуации.
Читайте также:  Препараты для микрофлоры кишечника для детей

Медицинские средства защиты

Антидоты используемые при отравлении цианидами делят на 2 группы:

2) связывающие CN-группу.

Как известно, попав в организм, с железом гемоглобина, находящимся в двухвалентном состоянии, цианиды не взаимодействуют, и, проникнув в ткани, связываются с трехвалентным железом цитохромоксидазы, которая утрачивает при этом свою физиологическую активность. Если отравленному быстро ввести в необходимом количестве метгемоглобинообразователь, то образующийся метгемоглобин (железо трехвалентно) будет вступать в химическое взаимодействие с ядами, связывая их и препятствуя поступлению в ткани. Более того, концентрация свободных токсикантов в плазме крови понизится, и возникнут условия для разрушения обратимой связи циан-иона с цитохромоксидазой.

Образованный комплекс циан-метгемоглобин — соединение непрочное. Через 1 — 1,5 ч этот комплекс начинает постепенно распадаться. Однако поскольку процесс диссоциации CNMtHb растянут во времени медленно высвобождающийся циан-ион успевает элиминироваться. Teм не менее при тяжелых интоксикациях возможен рецидив интоксикации. К числу метгемоглобинообразователей — антидотов цианидов, относят: азотистокислый натрий, амилнитрит, 4-диметиламинофенол, антициан, метиленовый синий. Следует помнить, что метгемоглобин не способен связываться с кислородом, поэтому необходимо применять строго определенные дозы препаратов, изменяющие не боле 25-30% гемоглобина крови.

Наиболее доступным метгемоглобинообразователем является нитрит натрия (NaNО2). При оказании помощи отравленным нитрит натрия вводят внутривенно (медленно) в виде 1-2% раствора в объеме 10-20 мл, под контролем артериального давления.

Амилнитрит предназначен для оказания первой медицинской помощи. Ампулу с амилнитритом (1 мл), которая находится в ватно-марлевой обертке, следует раздавить и заложить под маску противогаза. При необходимости его можно применять повторно. В настоящее время антидотные свойства препарата склонны объяснять не столько его способностью к метгемоглобинообразованию (которая выражена слабо), сколько усилением мозгового кровотока, развивающимся в результате сосудорасширяющего действия вещества.

Антициан является еще одним веществом, которое можно использовать в качестве антидота. При отравлении синильной кислотой первое введение антициана в виде 20% раствора производится в объеме 1,0 мл внутримышечно или 0,75 мл внутривенно. При внутривенном введении препарат разводят в 10 мл 25-40% раствора глюкозы или изотонического раствора хлорида натрия. Скорость введения 3 мл в минуту. При необходимости через 30 мин антидот может быть введен повторно в дозе 1,0 мл, но только внутримышечно. Еще через 30 мин можно провести третье введение в той же дозе, если к тому есть показания.

4-диметиламинофенол-гидрохлорид выпускается в ампулах в виде 15% раствора, вводится внутривенно из расчета 3-4 мг/кг массы больного в смеси с раствором глюкозы. Не вызывает развитие коллапса.

Частичным метгемоглобинообразуюшим действием обладает метиленовый синий. Основное же действие этого препарата заключается в его способности активировать тканевое дыхание. Препарат вводят внутривенно в виде 1% раствора в 25% растворе глюкозы (хромосмон) по 50 мл.

2) Связывающие CN-группу:

Натрия тиосульфат (Nа2S2О3). Как уже указывалось, одним из путей превращений цианидов в организме является образование роданистых соединений при взаимодействии с эндогенными содержащими серу веществами. Образующиеся роданиды, выделяющиеся из организма с мочой, примерно в 300 раз менее токсичны, чем цианиды.

Истинный механизм образования роданистых соединений до конца не установлен, но показано, что при введении натрия тиосульфата скорость процесса возрастает в 15-30 раз, что и является обоснованием целесообразности использования вещества в качестве антидота при отравлениях цианидами. Препарат вводят внутривенно в виде 30% раствора по 50 мл. Натрия тиосульфат потенцирует действие других антидотов. Оказание неотложной помощи целесообразно начинать с метгемоглобинообразователей, а затем переходить на введение других препаратов.

Глюкоза. Антидотный эффект препарата связывают со способностью веществ, содержащих альдегидную группу в молекуле, образовывать с синильной кислотой стойкие малотоксичные соединения — циангидрины. Вещество вводят внутривенно в количестве 20-25 мл 25-40% раствора. Помимо способности связывать токсикант, глюкоза оказывает благоприятное действие на дыхание, функцию сердца и увеличивает диурез.

Препараты, содержащие кобальт. Известно, что кобальт образует прочные связи с циан-ионом. В опытах на животных была показана эффективность гидроксикобаламина (витамина В12) для лечения отравлений цианистым калием. Препарат весьма эффективен, мало токсичен, но дорог, что потребовало поиска других соединений. Среди испытанных средств были: ацетат, глюконат-, глутамат-, гистидинат кобальта и двукобальтовая соль этилендиаминтетраацетата (ЭДТА). Наименее токсичным и эффективным оказался последний препарат, который и используется в некоторых странах в клинической практике. В нашей стране препараты кобальта в качестве антидотов не применяются.

В процессе оказания помощи отравленным предусматривается применение и других средств патогенетической и симптоматической терапии. Положительный эффект оказывает гипербарическая оксигенация.

Механизмы токсического действия синильной кислоты

Цианиды угнетают окислительно-восстановительные процессы в тканях, нарушая последний этап передачи протонов и электронов цепью дыхательных ферментов от окисляемых субстратов на кислород.

Как известно, на этом этапе переносчиками протонов и электронов является цепь цитохромов (цитохромы b, С1, С, a и a3). Последовательная передача электронов от одного цитохрома к другому приводит к окислению и восстановлению находящегося в них железа (Fe3+ « Fe2+). Конечным звеном цепи цитохромов является цитохромоксидаза. Установлено, что энзим включает 4 единицы гема «a» и 2 единицы – «a3». Именно с цитохромоксидазы электроны передаются кислороду, доставляемому к тканям кровью. Установлено, что циан-ионы (CN-), растворенные в крови, достигают тканей, где вступают во взаимодействие с трехвалентной формой железа цитохрома а3 цитохромоксидазы (с Fe2+ цианиды не взаимодействуют). Соединившись с цианидом, цитохромоксидаза утрачивает способность переносить электроны на молекулярный кислород.

Вследствие выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. Кислород с артериальной кровью доставляется к тканям в достаточном количестве, но ими не усваивается и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов (АТФ и др.). Активируется гликолиз, то есть обмен с аэробного перестраивается на анаэробный.

Помимо непосредственного действия цианидов на ткани, существенную роль в формировании острых симптомов поражения, имеет рефлекторный механизм.

Организм располагает специализированными структурами, чувствительность которых к развивающемуся дефициту макроэргов на много превосходит все другие ткани. Наиболее изученным из этих образований является каротидный клубочек (glomus caroticum). Каротидный клубочек расположен в месте бифуркации общей сонной артерии на внутреннюю и наружную. Через него за минуту протекает около 20 мл крови на 1 г ткани (через головной мозг – 0,6 мл). Он состоит из двух типов клеток (по Гессу): I типа, богатых митохондриями гломусных клеток, и II типа, капсулярных клеток. Окончания нерва Геринга, связывающего структуру с ЦНС, пронизывают тела клеток II типа и приходят в соприкосновение с клетками I типа. М.Л. Беленький показал, что рефлексы с гломуса возникают при изменениях РаО2, рН, других показателей обмена, которые отмечаются уже при минимальных нарушениях условий, необходимых для осуществления процесса окислительного фосфорилирования. Сильнейшим возбуждающим агентом этой структуры является цианистый калий. Был сделан вывод, что основная физиологическая роль каротидного клубочка – сигнализировать ЦНС о надвигающемся нарушении энергетического обмена. Есть предположение, что пусковым звеном формирующихся в гломусе рефлекторных реакций, является понижение в клетках I типа уровня АТФ. Понижение уровня АТФ провоцирует выброс гломусными клетками химических веществ, которые и возбуждают окончания нерва Геринга. Хорошо известна чувствительность гломуса к ряду нейроактивных соединений, например, Н-холиномиметиков, катехоламинов (Аничков С.В.). Однако известно также и то, что ни одно из них не изменяет чувствительности структуры к цианиду.

Синильная кислота

Действие адекватных раздражителей на гломус сопровождается возбуждением ЦНС, повышением АД, брадикардией, учащением и углублением дыхания, выбросом катехоламинов из надпочечников и, как следствие этого, гипергликемией и т.д. То есть всеми теми реакциями, которые отмечаются на ранних стадиях интоксикации веществами общеядовитого действия. Каким бы образом не нарушали токсиканты механизмы энергообеспечения, реакция организма во многом однотипна. Проявления интоксикации – это эффекты, формирующиеся сначала как следствие возбуждения и перевозбуждения специализированных регулирующих систем (например, гломуса), а затем – нарушение биоэнергетики непосредственно в тканях, и, прежде всего, быстро реагирующих на дефицит макроэргов (мозг).

Учебный вопрос 5.Клиника, профилактика и общие принципы оказания медицинской помощи при поражениях синильной кислотой в очаге и на этапах медицинской эвакуации

Дата добавления: 2017-03-29; просмотров: 158;

Молекула HCN сильно полярна (μ = 0,96·10 −29 Кл·м).

Безводный цианистый водород является сильно ионизирующим растворителем, растворенные в нем электролиты хорошо диссоциируют на ионы. Его относительная диэлектрическая проницаемость при 25 °C равна 107 (выше, чем у воды). Это обусловлено линейной ассоциацией полярных молекул HCN за счет образования водородных связей.

Очень слабая одноосновная кислота К = 1,32·10 −9 (18 °C). Образует с металлами соли — цианиды. Взаимодействует с оксидами и гидроксидами щелочных и щёлочноземельных металлов.

Пары синильной кислоты горят на воздухе фиолетовым пламенем с образованием Н2О, СО2 и N2. В смеси кислорода со фтором горит с выделением большого количества тепла:

кДж.

Синильная кислота широко применяется в органическом синтезе. Она реагирует с карбонильными соединениями, образуя циангидрины:

С хлором, бромом и иодом прямо образует циангалогениды:

С галогеналканами — нитрилы (реакция Кольбе):

С алкенами и алкинами реагирует, присоединяясь к кратным связям:

Легко полимеризуется в присутствии основания (часто со взрывом). Образует аддукты, например HCN-CuCl.

Физиологические

Синильная кислота является веществом, вызывающим кислородное голодание тканевого типа. При этом наблюдается высокое содержание кислорода как в артериальной, так и в венозной крови и уменьшение таким образом артерио-венозной разницы, резкое понижение потребления кислорода тканями с уменьшением образования в них углекислоты. Синильная кислота и её соли, растворенные в крови, достигают тканей, где вступают во взаимодействие с трехвалентной формой железа цитохромоксидазы. Соединившись с цианидом, цитохромоксидаза утрачивает способность переносить электроны на молекулярный кислород. Вследствие выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. Кислород доставляется к тканям в достаточном количестве с артериальной кровью, но ими не усваивается и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов, необходимых для нормальной деятельности различных органов и систем. Активизируется гликолиз, то есть обмен с аэробного перестраивается на анаэробный. Также подавляется активность и других ферментов — каталазы, пероксидазы, лактатдегидрогеназы.

Читайте также:  Занятия на кроссовере

Действие на нервную систему

В результате тканевой гипоксии, развивающейся под влиянием синильной кислоты, в первую очередь нарушаются функции центральной нервной системы.

Действие на дыхательную систему

В результате острого отравления наблюдается резко выраженное увеличение частоты и глубины дыхания. Развивающуюся одышку следует рассматривать как компенсаторную реакцию организма на гипоксию. Стимулирующее действие синильной кислоты на дыхание обусловлено возбуждением хеморецепторов каротидного синуса и непосредственным действием яда на клетки дыхательного центра. Первоначальное возбуждение дыхания по мере развития интоксикации сменяется его угнетением вплоть до полной остановки. Причинами этих нарушений являются тканевая гипоксия и истощение энергетических ресурсов в клетках каротидного синуса и в центрах продолговатого мозга.

Действие на сердечно-сосудистую систему

Проникая в кровь, она снижает способность клеток воспринимать кислород из притекающей крови. Наступает кислородное голодание [источник не указан 656 дней] . А так как нервные клетки больше всех остальных нуждаются в кислороде, они первыми страдают от действия синильной кислоты. В начальном периоде интоксикации наблюдается замедление сердечного ритма. Повышение артериального давления и увеличение минутного объема сердца происходят за счет возбуждения синильной кислотой хеморецепторов каротидного синуса и клеток сосудодвигательного центра, с одной стороны, выброса катехоламинов из надпочечников и вследствие этого спазма сосудов — с другой. По мере развития отравления артериальное давление падает, пульс учащается, развивается острая сердечно-сосудистая недостаточность и наступает остановка сердца.

Изменения в системе крови

Содержание в крови эритроцитов увеличивается, что находит объяснение в рефлекторном сокращении селезенки в ответ на развивающуюся гипоксию. Цвет венозной крови становится ярко-алым за счет избыточного содержания кислорода, не поглощенного тканями. Артерио-венозная разница по кислороду резко уменьшается. При угнетении тканевого дыхания изменяется как газовый, так и биохимический состав крови. Содержание CO2 в крови снижается вследствие меньшего образования и усиленного её выделения при гипервентиляции. Это приводит в начале развития интоксикации к газовому алкалозу, который меняется метаболическим ацидозом, что является следствием активации процессов гликолиза. В крови накапливаются недоокисленные продукты обмена. Увеличивается содержание молочной кислоты, нарастает содержание ацетоновых тел, отмечается гипергликемия. Нарушением окислительно-восстановительных процессов в тканях объясняется развитие гипотермии. Таким образом, синильная кислота и её соли вызывают явления тканевой гипоксии и связанные с ней нарушения дыхания, кровообращения, обмена веществ, функции центральной нервной системы, выраженность которых зависит от тяжести интоксикации.

Получение

В настоящий момент есть три наиболее распространенных метода получения синильной кислоты в промышленных масштабах:

  • Метод Андрусова: прямой синтез из аммиака и метана в присутствии воздуха и платиновогокатализатора при высокой температуре:

  • Метод BMA (Blausäure aus Methan und Ammoniak), запатентованный фирмой Degussa: прямой синтез из аммиака и метана в присутствии платинового катализатора при высокой температуре:

  • Побочный продукт при производстве акрилонитрила путем окислительного аммонолиза пропилена.

Применение

В химическом производстве

Является сырьём для получения акрилонитрила, метилметакрилата, адипонитрила и других соединений. Синильная кислота и большое число её производных используются при извлечении благородных металлов из руд, при гальванопластическом золочении и серебрении, в производстве ароматических веществ, химических волокон, пластмасс, каучука, органического стекла, стимуляторов роста растений, гербицидов.

Как отравляющее веществo

Впервые в роли боевого отравляющего вещества синильная кислота была использована французской армией 1 июля 1916 года на реке Сомме [3] . Однако из-за отсутствия кумулятивных свойств и малой стойкости на местности последующее использование синильной кислоты в этом качестве прекратилось.

Синильная кислота являлась основной составной частью препарата «Циклон Б», который применялся нацистами во время Второй мировой войны для убийства людей в концентрационных лагерях. В некоторых штатах США синильная кислота использовалась в газовых камерах в качестве отравляющего вещества при исполнении приговоров смертной казни, в последний раз это было сделано в Аризоне в 1999 году. [4] Смерть, как правило, наступает в течение 5—15 минут.

Соли синильной кислоты называются цианидами. Цианиды подвержены сильному гидролизу. При хранении водных растворов цианидов при доступе диоксида углерода они разлагаются:

Ион CN − (изоэлектронный молекуле СО) входит как лиганд в большое число комплексных соединений d-элементов. Комплексные цианиды в растворах очень стабильны.

Цианиды тяжёлых металлов термически неустойчивы; в воде, кроме цианида ртути (Hg(CN)2), нерастворимы. При окислении цианиды образуют соли — цианаты:

Многие металлы при действии избытка цианида калия или цианида натрия дают комплексные соединения, что используется, например, для извлечения золота и серебра из руд:

Биологические свойства

В этом разделе не хватает ссылок на источники информации.

Синильная кислота — сильный яд общетоксического действия, блокирует клеточную цитохромоксидазу, в результате чего возникает выраженная тканевая гипоксия. Средние летальные дозы (LD50) и концентрации для синильной кислоты [5] :

При вдыхании синильной кислоты в небольших концентрациях наблюдается царапанье в горле, горький вкус во рту, головная боль, тошнота, рвота, боли за грудиной. При нарастании интоксикации уменьшается частота пульса, усиливается одышка, развиваются судороги, наступает потеря сознания. При этом цианоз отсутствует (содержание кислорода в крови достаточное, нарушена его утилизация в тканях).

При вдыхании синильной кислоты в высоких концентрациях или при попадании её внутрь появляются клонико-тонические судороги и почти мгновенная потеря сознания вследствие паралича дыхательного центра. Смерть может наступить в течение нескольких минут.

Антидоты синильной кислоты

В этом разделе не хватает ссылок на источники информации.

Для лечения отравлений синильной кислотой известно несколько антидотов, которые могут быть разделены на две группы. Лечебное действие одной группы антидотов основано на их взаимодействии с синильной кислотой с образованием нетоксичных продуктов. К таким препаратам относятся, например, коллоидная сера и различные политионаты, переводящие синильную кислоту в малотоксичную роданистоводородную кислоту, а также альдегиды и кетоны (глюкоза, диоксиацетон и др.), которые химически связывают синильную кислоту с образованием циангидринов. К другой группе антидотов относятся препараты, вызывающие образование в крови метгемоглобина: синильная кислота связывается метгемоглобином и не доходит до цитохромоксидазы. В качестве метгемоглобинообразователей применяют метиленовую синь, а также соли и эфиры азотистой кислоты. Одним из антагонистов синильной кислоты является сахар.

Сравнительная оценка антидотных средств: метиленовая синь предохраняет от двух смертельных доз, тиосульфат натрия и тетратиосульфат натрия — от трёх доз, нитрит натрия и этилнитрит — от четырёх доз, метиленовая синь совместно с тетратиосульфатом — от шести доз, амилнитрит совместно с тиосульфатом — от десяти доз, азотистокислый натрий совместно с тиосульфатом — от двадцати смертельных доз синильной кислоты.

Сини́льная (циа́нистоводородная) кислота́, цианистый водород, HCN [2] — бесцветная, очень летучая, легкоподвижная ядовитая жидкость, имеющая характерный запах горького миндаля [3] .

Синильная кислота
Общие Традиционные названия циановодород, синильная кислота Хим. формула CHN Рац. формула HCN Физические свойства Состояние бесцветный газ или бесцветная легколетучая жидкость Молярная масса 27,0253 г/моль Плотность 0,687 г/см³ Динамическая вязкость 0,201 Па·с Энергия ионизации 13,6 ± 0,1 эВ [1] Термические свойства Т. плав. −13,4 °C Т. кип. 26,7 °C Т. всп. −17,8 °C Пр. взрв. 5,6 ± 0,1 об.% [1] Мол. теплоёмк. (средняя для газа и жидкости) 1,97 Дж/(моль·К) Давление пара 630 ± 1 мм рт.ст. [1] Химические свойства pKa 9,21 Растворимость в воде в любых пропорциях Оптические свойства Показатель преломления 1,2675 Структура Дипольный момент 2,98 Д Классификация Рег. номер CAS 74-90-8 PubChem 768 Рег. номер EINECS 200-821-6 SMILES Рег. номер EC 200-821-6 RTECS MW6825000 ChEBI 18407 Номер ООН 1051 ChemSpider 748 и 19951400 Безопасность ЛД50 3,7 мг/кг (мыши, перорально) Токсичность

Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Синильная кислота содержится в некоторых растениях, коксовом газе, табачном дыме, выделяется при термическом разложении нейлона, полиуретанов. Смешивается во всех соотношениях с водой, этанолом, диэтиловым эфиром.

Содержание

Химические Править

Молекула HCN сильно полярна (μ = 0,96⋅10 −29 Кл·м).

Безводный цианистый водород является сильно ионизирующим растворителем, растворённые в нём электролиты хорошо диссоциируют на ионы. Его относительная диэлектрическая проницаемость при 25 °C равна 107 (выше, чем у воды). Это обусловлено линейной ассоциацией полярных молекул HCN за счёт образования водородных связей.

Очень слабая одноосновная кислота К = 1,32⋅10 −9 (18 °C). Образует с металлами соли — цианиды. Взаимодействует с оксидами и гидроксидами щелочных и щёлочноземельных металлов.

Пары синильной кислоты горят на воздухе фиолетовым пламенем с образованием Н2О, СО и N2. В смеси кислорода со фтором горит с выделением большого количества тепла:

Синильная кислота широко применяется в органическом синтезе. Она реагирует с карбонильными соединениями, образуя циангидрины:

С хлором, бромом и иодом прямо образует циангалогениды:

С галогеналканами — нитрилы (реакция Кольбе):

С алкенами и алкинами реагирует, присоединяясь к кратным связям:

Легко полимеризуется в присутствии основания (часто со взрывом). Образует аддукты, например, HCN-CuCl.

Читайте также:  Комбиотех вакцина инструкция по применению

При разложении водой даёт формиат аммония, либо формамид

Физиологические Править

Синильная кислота является веществом, вызывающим кислородное голодание тканевого типа. [4] При этом наблюдается высокое содержание кислорода как в артериальной, так и в венозной крови и уменьшение таким образом артерио-венозной разницы, резкое понижение потребления кислорода тканями с уменьшением образования в них углекислоты. Синильная кислота и её соли, растворённые в крови, достигают тканей, где вступают во взаимодействие с трёхвалентной формой железа цитохромоксидазы. Соединившись с цианидом, цитохромоксидаза теряет способность переносить электроны на молекулярный кислород. Вследствие выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. С артериальной кровью кислород доставляется к тканям в достаточном количестве, но не усваивается ими и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов, необходимых для нормальной деятельности различных органов и систем. Активизируется гликолиз, то есть обмен с аэробного перестраивается на анаэробный. Также подавляется активность и других ферментов — каталазы, пероксидазы, лактатдегидрогеназы.

Действие на нервную систему Править

В результате тканевой гипоксии, развивающейся под влиянием синильной кислоты, в первую очередь нарушаются функции центральной нервной системы.

Действие на дыхательную систему Править

В результате острого отравления наблюдается резкое увеличение частоты и глубины дыхания. Развивающуюся одышку следует рассматривать как компенсаторную реакцию организма на гипоксию. Стимулирующее действие синильной кислоты на дыхание обусловлено возбуждением хеморецепторов каротидного синуса и непосредственным действием яда на клетки дыхательного центра. Первоначальное возбуждение дыхания по мере развития интоксикации сменяется его угнетением вплоть до полной остановки. Причинами этих нарушений являются тканевая гипоксия и истощение энергетических ресурсов в клетках каротидного синуса и в центрах продолговатого мозга.

Действие на сердечно-сосудистую систему Править

Проникая в кровь, синильная кислота снижает способность клеток воспринимать кислород из притекающей крови. А так как нервные клетки больше остальных нуждаются в кислороде, они первыми страдают от её действия. В начальном периоде интоксикации наблюдается замедление сердечного ритма. Повышение артериального давления и увеличение минутного объёма сердца происходят за счёт возбуждения синильной кислотой хеморецепторов каротидного синуса и клеток сосудодвигательного центра, с одной стороны, и выброса катехоламинов из надпочечников и вследствие этого спазма сосудов — с другой. В дальнейшем артериальное давление падает, пульс учащается, развивается острая сердечно-сосудистая недостаточность и наступает остановка сердца.

Изменения в системе крови Править

Содержание в крови эритроцитов увеличивается, что объясняется рефлекторным сокращением селезёнки в ответ на развивающуюся гипоксию. Цвет венозной крови становится ярко-алым за счёт избыточного содержания кислорода, не поглощённого тканями. Артерио-венозная разница по кислороду резко уменьшается. При угнетении тканевого дыхания изменяется как газовый, так и биохимический состав крови. Содержание CO2 в крови снижается вследствие меньшего образования и усиленного его выделения при гипервентиляции. Это приводит в начале развития интоксикации к газовому алкалозу, который меняется метаболическим ацидозом, что является следствием активации процессов гликолиза. В крови накапливаются недоокисленные продукты обмена. Увеличивается содержание молочной кислоты, нарастает содержание ацетоновых тел, отмечается гипергликемия. Нарушение окислительно-восстановительных процессов в тканях приводит к гипотермии. Таким образом, синильная кислота и её соли вызывают явления тканевой гипоксии и связанные с ней нарушения дыхания, кровообращения, обмена веществ, функции центральной нервной системы, выраженность которых зависит от тяжести интоксикации.

Показано, что нейроны способны вырабатывать эндогенную синильную кислоту (цианистый водород, HCN) после их активации эндогенными или экзогенными опиоидами и что образование нейронами эндогенной синильной кислоты повышает активность NMDA-рецепторов и, таким образом, может играть важную роль в передаче сигнала между нейронами (нейротрансмиссии). Более того, образование эндогенного цианида оказалось необходимым для проявления в полном объёме анальгетического действия эндогенных и экзогенных опиоидов, а вещества, снижающие образование свободной HCN, оказались способны уменьшать (но не полностью устранять) анальгетическое действие эндогенных и экзогенных опиоидов. Выдвинуто предположение, что эндогенная синильная кислота может являться нейромодулятором [5] .

Известно также, что стимуляция мускариновых холинорецепторов клеток феохромоцитомы в культуре повышает образование ими эндогенной синильной кислоты, однако стимуляция мускариновых холинорецепторов ЦНС в живом организме крысы приводит, наоборот, к снижению образования эндогенной синильной кислоты [6] .

Также показано, что синильная кислота выделяется лейкоцитами в процессе фагоцитоза и способна убивать патогенные микроорганизмы [5] .

Возможно, что вазодилатация, вызываемая нитропруссидом натрия, связана не только с образованием окиси азота (механизм, общий для действия всех сосудорасширяющих препаратов группы нитратов, таких как нитроглицерин, нитросорбид), но и с образованием цианида. Возможно, что эндогенный цианид и образующийся при его обезвреживании в организме тиоцианат играют роль в регуляции функций сердечно-сосудистой системы, в обеспечении вазодилатации и являются одними из эндогенных антигипертензивных веществ [7] .

В настоящий момент существуют три наиболее распространённых метода получения синильной кислоты в промышленных масштабах:

  • Метод Андрусова [8] — прямой синтез из аммиака и метана в присутствии воздуха и платиновогокатализатора при высокой температуре:
  • Метод BMA (Blausäure aus Methan und Ammoniak), запатентованный фирмой Degussa: прямой синтез из аммиака и метана без воздуха в присутствии платинового катализатора при высокой температуре:
  • Побочный продукт при производстве акрилонитрила путём окислительного аммонолиза пропилена.
  • Реакцией цианида калия с водой и диоксидом углерода:
  • В Шавиниганском процессе углеводороды (например, пропан) реагируют с аммиаком. В лаборатории небольшие количества синильной кислоты образуются путём добавления кислот к цианиднымсолямщелочных металлов:

Эта реакция иногда является основой случайных отравлений, потому что кислота превращает нелетучую цианидную соль в газообразный циановодород.

  • Реакцией монооксида углерода с аммиаком:
  • Фотолиз метана в бескислородной атмосфере:

В химическом производстве Править

Является сырьём для получения акрилонитрила, метилметакрилата, адипонитрила и других соединений. Синильная кислота и большое число её производных используются при извлечении благородных металлов из руд, при гальванопластическом золочении и серебрении, в производстве ароматических веществ, химических волокон, пластмасс, каучука, органического стекла, стимуляторов роста растений, гербицидов.

Как отравляющее веществo Править

Впервые в роли боевого отравляющего вещества синильная кислота была использована французской армией 1 июля 1916 года на реке Сомме [9] . Однако из-за отсутствия кумулятивных свойств и малой стойкости на местности её последующее использование в этом качестве прекратилось.

Синильная кислота являлась основной составляющей препарата «Циклон Б», который был наиболее популярным в Европе во время Второй мировой войны инсектицидом, а также использовался нацистами для убийства людей в концентрационных лагерях. В некоторых штатах США синильная кислота использовалась в газовых камерах в качестве отравляющего вещества при исполнении приговоров смертной казни; в последний раз это было сделано в Аризоне в 1999 году [10] . Смерть, как правило, наступает в течение 5—15 минут.

Соли синильной кислоты называются цианидами. Все цианиды, как и сама кислота, очень ядовиты. Цианиды подвержены сильному гидролизу. При хранении водных растворов цианидов при доступе диоксида углерода они разлагаются:

Ион CN − (изоэлектронный молекуле СО) входит как лиганд в большое число комплексных соединений d-элементов. Комплексные цианиды в растворах очень стабильны.

Цианиды тяжёлых металлов термически неустойчивы; в воде, кроме цианида ртути (Hg(CN)2), нерастворимы. При окислении цианиды образуют соли — цианаты:

Многие металлы при действии избытка цианида калия или цианида натрия дают комплексные соединения, что используется, например, для извлечения золота и серебра из руд:

Синильная кислота — сильнейший яд общетоксического действия, блокирует клеточную цитохромоксидазу, в результате чего возникает выраженная тканевая гипоксия. Половинные летальные дозы (LD50) и концентрации для синильной кислоты [11] :

  • Мыши:
  • перорально (ORL-MUS LD50) — 3,7 мг/кг;
  • при вдыхании (IHL-MUS LC50) — 323 м.д.;
  • внутривенно (IVN-MUS LD50) — 1 мг/кг.
  • Кролики, внутривенно (IVN-RBT LD50) − , образующийся при её взаимодействии с серой под действием фермента роданазы.
  • Для лечения отравлений синильной кислотой известно несколько антидотов, которые могут быть разделены на две группы. Лечебное действие одной группы антидотов основано на их взаимодействии с синильной кислотой с образованием нетоксичных продуктов. К таким препаратам относятся, например, коллоидная сера и различные политионаты, переводящие синильную кислоту в малотоксичную роданистоводородную кислоту, а также альдегиды и кетоны (глюкоза, диоксиацетон и др.), которые химически связывают синильную кислоту с образованием циангидринов. К другой группе антидотов относятся препараты, вызывающие образование в крови метгемоглобина: синильная кислота связывается метгемоглобином и не доходит до цитохромоксидазы. В качестве метгемоглобинообразователей применяют метиленовую синь, а также соли и эфиры азотистой кислоты.

    Сравнительная оценка антидотных средств: метиленовая синь предохраняет от двух смертельных доз, тиосульфат натрия и тетратиосульфат натрия — от трёх доз, нитрит натрия и этилнитрит — от четырёх доз, метиленовая синь совместно с тетратиосульфатом — от шести доз, амилнитрит совместно с тиосульфатом— от десяти доз, азотистокислый натрий совместно с тиосульфатом — от двадцати смертельных доз синильной кислоты.

    ПДК [12] в воздухе рабочей зоны равна 0,3 мг/м 3 (максимально-разовая). По данным [13] при опасной концентрации люди скорее всего не почувствуют запаха; а согласно [14] порог восприятия запаха может быть 5,6 мг/м 3 . Поэтому использование широко распространённых фильтрующих СИЗОД в сочетании с "заменой фильтров по появлении запаха под маской" (как это почти всегда рекомендуется в РФ поставщиками СИЗОД) приведёт к чрезмерному воздействию синильной кислоты на, по крайней мере, часть работников — из-за запоздалой замены противогазных фильтров. Для защиты от этого вещества следует использовать значительно более эффективные изменение технологии и средства коллективной защиты.

    Комментировать
    1 просмотров
    Комментариев нет, будьте первым кто его оставит

    Это интересно
    No Image Медицина
    0 комментариев
    No Image Медицина
    0 комментариев
    No Image Медицина
    0 комментариев
    No Image Медицина
    0 комментариев
    Adblock detector